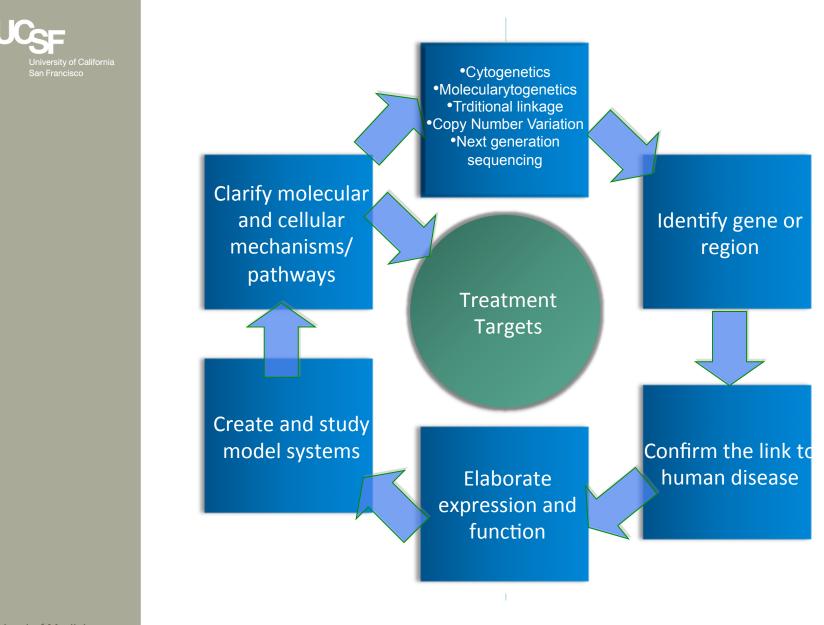


School of Medicine

Matthew W. State MD, PhD Professor and Chairman, Department of Psychiatry


July 7, 2013

Recent Progress in the genomics of autism spectrum disorders

Autism Spectrum Disorders

- Fundamental impairment in reciprocal social interaction, language development and restricted interests/repetitive behaviors
- Onset in early childhood
- Limited treatment options; nothing for core social deficits
- Lack of understanding of basic pathophysiological mechanisms is a major obstacle
- Gene discovery can be a critical first step on the path to solving this

Genetics 101

- Any two individuals are ~ 99% identical
- We are interested in the 1% difference
- These variations are the basis of the genetic contribution to risk
- "Gene discovery" is "variation discovery"

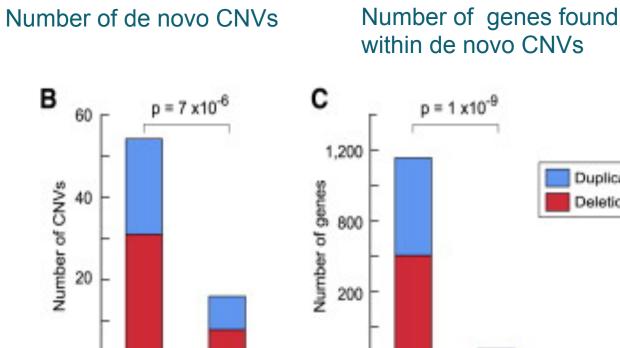
- Genetic variation can be common or rare in the population
 - common variation tends to have small effects and
 - rare variation tends to have big effects
- Genetic variation can involve the sequence of the DNA
 - Single Nucleotide Variants (SNVs; aka "point mutations")
- Genetic variation can involve the structure of the DNA:
 - loses or gains = deletions or duplications.
 - Copy Number Variation (CNVs)
- Variation can be passed from generation to generation (transmitted) or new
 - Variation can occur in the parental germ-line/De novo in the child


Genetics of ASD

- Generally described as the most heritable NP disorder
- Few families with apparent Mendelian transmission
- Genetically complex, phenotypically heterogeneous group of disorders
- Lots of early emphasis on variation that is common in the genome (paralleling most early psychiatric genetics work)
- Candidate gene approaches; no clear results similar to other areas of medicine
- Genome wide association studies (GWAS): powerful gene discovery approach in many common disorders --no replicating loci in ASD ~N=3000 cases

Genetics of ASD

- Important but infrequent and sporadic findings of rare coding mutations in genes coding synaptic proteins (NLGN4X, SHANK2, SHANK3)
- Growing appreciation of the overlap of ASD with monogenic syndromes (Fragile X, NF)
- First hint of a systematic approach to gene discovery in early copy number variation studies
 - Increased burden of de novo variation in simplex families (Sebat et al Science 2007)
 - Recurrent de novo CNVs; 16p11.2 (Weiss et al NEJM 2008; Kumar et al Hum Mol Genet 2008; Marshall et al Am J Hum Genet 2008)
 - Modest increase in burden (amount in cases v controls) of CNVs (Pinto et al Nature 2010)


Duplications

Deletions

Stephan Sanders

Siblings

(n=872)

0

Large risks: 5x-16x increase

N=~1000 matched pairs

Probands

(n=872)

Siblings

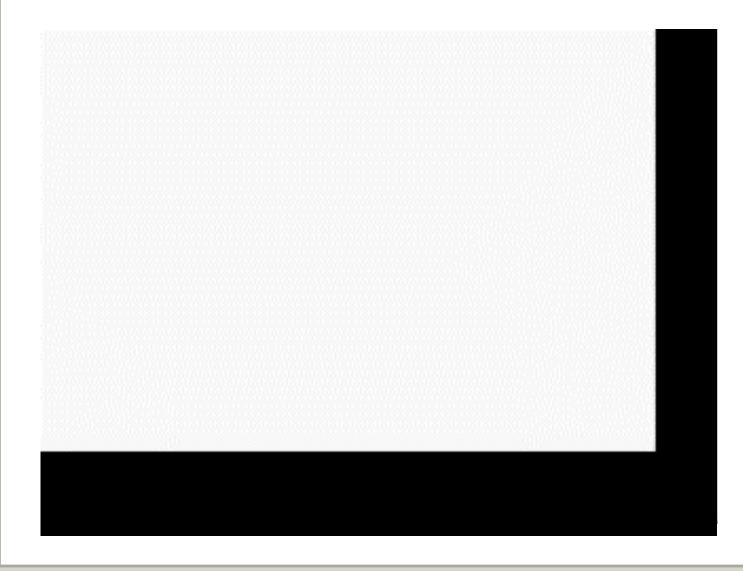
(n=872)

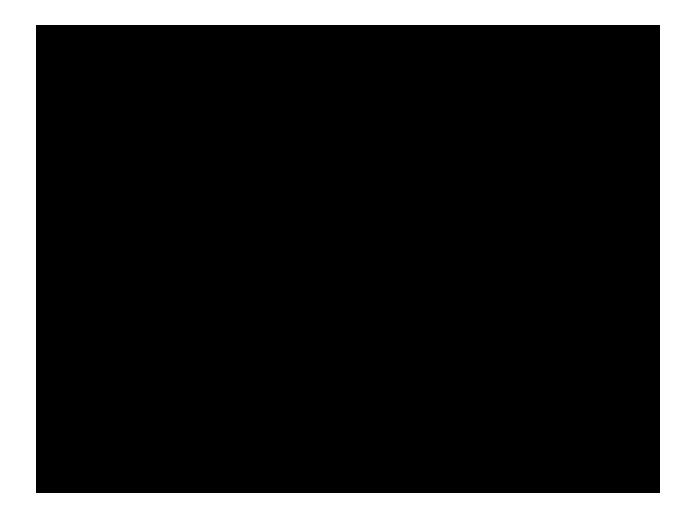
0

Probands

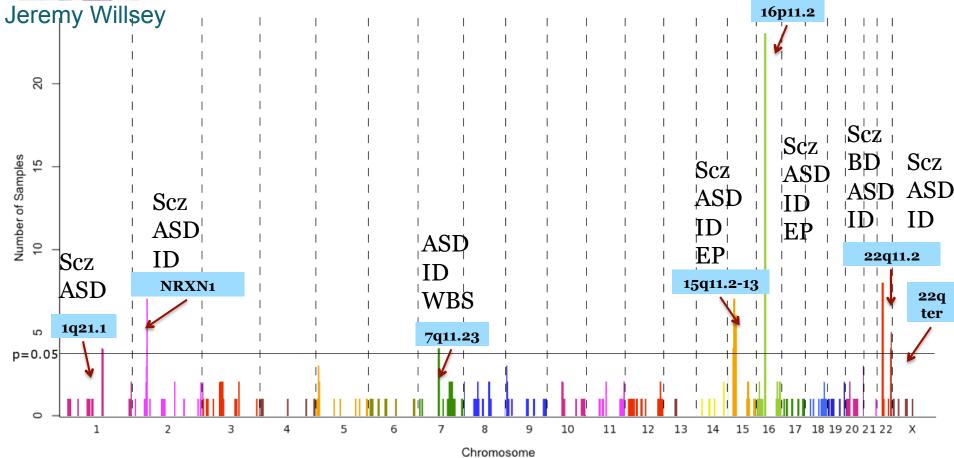
(n=872)

Sanders et al Neuron 2011

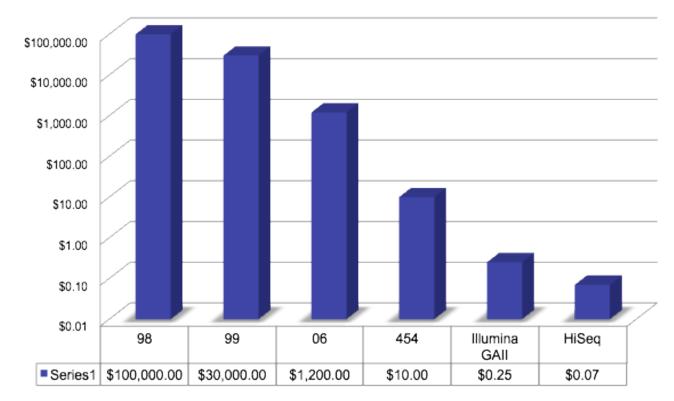

School of Medicine



ASD (including 7q duplications)



7q deletions


School of Medicine

Willsey et al, unpublished

Costs per 1,000,000 base pairs DNA

School of Medicine

Stephan Sanders

ETTER

doi:10.1038/nature10945

De novo mutations revealed by whole-exome sequencing are strongly associated with autism

Stephan J. Sanders¹, Michael T. Murtha¹, Abha R. Gupta²*, John D. Murdoch¹*, Melanie J. Raubeson¹*, A. Jeremy Willsey¹*, A. Gulhan Ercan-Sencicek¹*, Nicholas M. DiLullo¹*, Neelroop N. Parikshak³, Jason L. Stein³, Michael F. Walker¹, Gordon T. Ober¹, Nicole A. Teran¹, Youeun Song¹, Paul FL-Eisbauv¹, Rvan C. Murtha¹, Murim Choi⁴, John D. Overton⁴, Robert D. Biornson⁵

Nicholas J. Carriero⁵, Kyle A. M Kathryn Roeder⁹, Daniel H. Ges

doi:10.1038/nature11011

Patterns and rates of exonic *de novo* mutations in autism spectrum disorders

Benjamin M. Neale^{1,2}, Yan Kou^{3,4}, Li Liu⁵, Avi Ma'ayan³, Kaitlin E. Samocha^{1,2}, Aniko Sabo⁶, Chiao-Feng Lin⁷, Christine Stevens², Li-San Wang⁷, Vladimir Makarov^{4,8}, Paz Polak^{2,9}, Seungtai Yoon^{4,8}, Jared Maguire⁵, Emily L. Crawford¹⁰, Nicholas G. Campbell¹⁰, Evan T. Geller⁷, Otto Valladares⁷ Chad Schafer⁵ Han Liu¹¹ Tuo Zhao¹¹ Guioing Cai^{4,8} Javon Lihm^{4,8} Buth Dannenfelser³ Omar Jabado¹², Zu

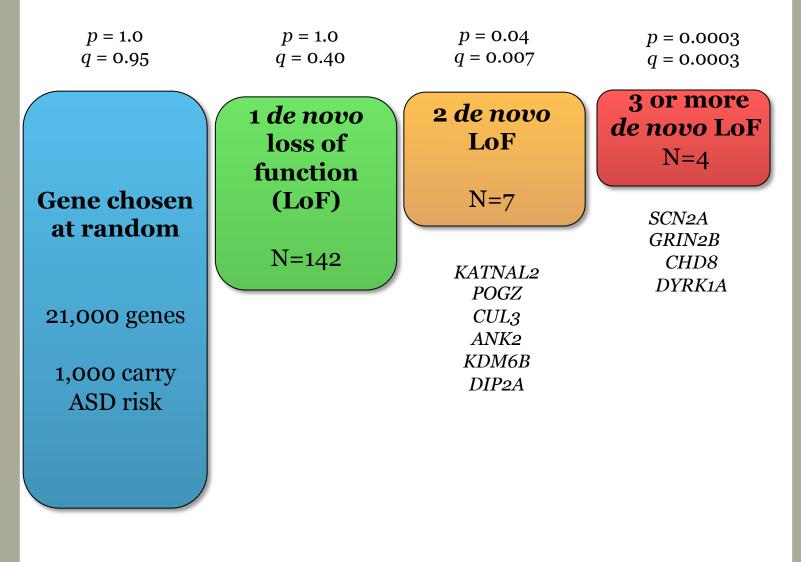
Lora Lewis⁶, Yi Ha Menachem Fromer Jack R. Wimbish¹⁴ Joseph D. Buxbaur James S. Sutcliffe¹⁰

doi:10.1038/nature10989

Sporadic autism exomes reveal a highly interconnected protein network of *de novo* mutations

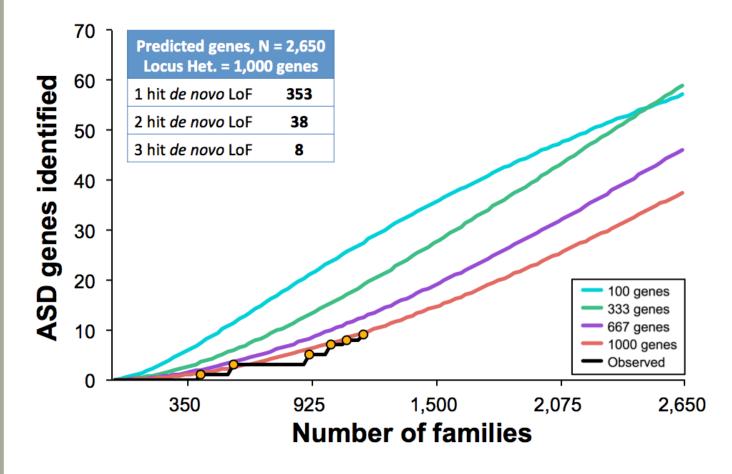
Brian J. O'Roak¹, Laura Joshua D. Smith¹, Emi Elhanan Borenstein^{1,3},

Neuron Article


De Novo Gene Disruptions in Children on the Autistic Spectrum

Ivan lossifov,^{1,6} Michael Ronemus,^{1,6} Dan Levy,¹ Zihua Wang,¹ Inessa Hakker,¹ Julie Rosenbaum,¹ Boris Yamrom,¹ Yoon-ha Lee,¹ Giuseppe Narzisi,¹ Anthony Leotta,¹ Jude Kendall,¹ Ewa Grabowska,¹ Beicong Ma,¹ Steven Marks,¹ Linda Rodgers,¹ Asya Stepansky,¹ Jennifer Troge,¹ Peter Andrews,¹ Mitchell Bekritsky,¹ Kith Pradhan,¹ Elena Ghiban,¹ Melissa Kramer,¹ Jennifer Parla,¹ Ryan Demeter,² Lucinda L. Fulton,² Robert S. Fulton,² Vincent J. Magrini,² Kenny Ye,³ Jennifer C. Darnell,⁴ Robert B. Darnell,^{4,5} Elaine R. Mardis,² Richard K. Wilson,² Michael C. Schatz,¹ W. Richard McCombie,¹ and Michael Wigler,¹

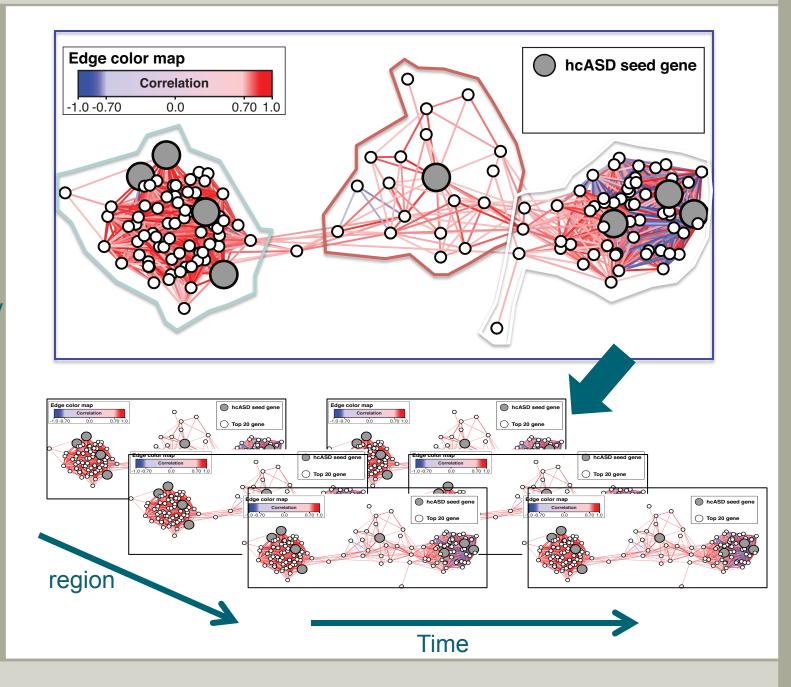
¹Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA


Sanders et al Nature 2012

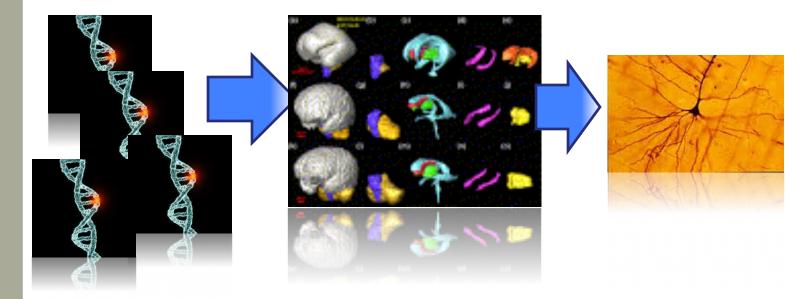
2 hit LoF consistent with 1,000 gene model

Sanders et al Nature 2012

- When we started, the genetic architecture of ASD was largely speculation. We now know:
 - hundreds of CNVs perhaps 1000 genes
 - CNVs carry significant risk in ~5%-10% of cases
 - CNV risks for ASD are not specific
 - De novo SNVs in another(?) 15%
 - Increasing de novo SNV rate w paternal age
- Via the study of de novo mutation, there is a systematic path forward for gene discovery
- Clear association of SCN2A, CHD8, GRIN2B, DYRK1A
- How to manage the complexity: heterogeneity, phenotypic diversity and pleiotropy?
 - Pull on the thread and get all of biology
 - Can we determine when and where to look?



_						_	_			-	
🗛 Sp	atiotem	poral hu	man br	ain tran	scriptor	ne	B Period	Description	Age		
Periods 1 & 2 Periods 3-15							1	Embryonic	4-8 PCW		
FC	PC	TC	OFC	DFC	VFC	MFC	2	Early fetal	8-10 PCW		
OC	HIP	VF	M1C	S1C	IPC	A1C	3	Early fetal	10-13 PCW		
MGE	LGE	CGE	STC	ITC	V1C	HIP	4	Early mid-fetal	13-16 PCW		
DIE	DTH	URL	AMY	STR	MD	CBC	5	Early mid-fetal	16-19 PCW		
	DIII	/	, , ,	0111		(6	Late mid-fetal	19-24 PCW		
1			/			``	7	Late fetal	24-38 PCW		
1		11			all	Sec.	8	Neonatal & early infancy	0-6 M		
1		11		L	201	ACX XS	9	Late infancy	6-12 M		
1	,	1	55		SUL	- MAY	10	Early childhood	1-6 Y		
-	. !		17	A KC	CAL	The	11	Middle and late childhood	d 6-12 Y		
6		12		2)	S	(with	12	Adolescence	12-20 Y		
C		SY	<		TS	L'EST	13	Young adulthood	20-40 Y		
2			-)	C	All	14	Middle adulthood	40-60 Y		
							15	Late adulthood	60Y+		
		15 peri	ods of c	levelopn	nent			st-conceptional weeks; M, p Y, postnatal years.	oostnatal		
			Gene expression (% of maximum)	100 80 60 40 20	bryon	ic Fe	tal	Infancy Chi	Idhood	Cell proliferati Progenitors ar immature neu Synapse deve Dendrite deve Myelination	nd Irons Iopment
			U	0	0–8 week	8– 5 we	38 eks	0–12 months Age (log sca	1–12 years le)	12–20 years	20 + years



Jeremy Willsey

- Sea change in the genetics of ASD
- Systematic gene discovery can offer a foothold into biology
- Parallel advances in neurobiology and systems biology provide unprecedented traction
- The key to moving toward the development of novel and more effective treatments.

- Eric Morrow (Brown)
 - Dilber Gamsiz
- Jim Sutcliffe (Vanderbilt)
 - Brian Yaspan
 - Suzanne Thomson
 - Sabata Lund
- Ed Cook (UIC)
 - Lea Davis
 - Suma Jacob
- Bernie Devlin (Pittsburgh)
- Kathryn Roeder
 - Lambertus Klei
 - Su Chu
- Donna Martin (UMich)
- Dorothy Grice (Columbia)
- Dan Geschwind (UCLA)
 - Rui Luo
 - Jenni Lowe

Rita Cantor (UCLA)

Ake Lu

- Chris Walsh (Boston Childrens')
 Tim Yu
- Matt State (Yale/UCSF)
- Stephan Sanders
- Michael Murtha
- Gulhan Erca
- Abha Gupta
- Jay Tischfield and Andy Brooks (Rutgers)
- David Ledbetter (Geisinger)
- Christa Martin (Emory)
- Daniel Moreno-De Luca
- Eric Fombonne (McGill)
- Cathy Lord (Cornell)
- Art Beaudet (Baylor)

School of Medicine

Yuan Tian

State lab Stephan Sanders Michael T. Murtha Abha R. Gupta John D. Murdoch Melanie J. Raubeson A. Jeremy Willsey A. Gulhan Ercan-Sencicek Nicholas M. DiLullo Michael F. Walker Gordon T. Ober Nicole A. Teran Youeun Song Paul El-Fishawy Ryan Murtha

Yale Center Genome Analysis Shrikant M. Mane John D. Overton Robert D. Bjornson Nicholas J. Carrierio

Nenad Sestan Kyle A. Meyer

Richard P. Lifton Murim Choi

Murat Günel Kaya Bilguvar Bernie Devlin (Pittsburgh)

Kathryn Roeder (Carnegie Mellon)

Dan Geschwind (UCLA) Neelroop N. Parikshak Jason L. Stein

Simons Foundation Overlook International Fund National Institute of Mental Health

The families who participated in the SFARI: Simons Foundation Autism Research Initiative (<u>www.sfari.org</u>)